Technical How-to

17 posts

This post provides detailed steps for setting up the key components of a multi-account ML platform. This includes configuring the ML Shared Services Account, which manages the central templates, model registry, and deployment pipelines; sharing the ML Admin and SageMaker Projects Portfolios from the central Service Catalog; and setting up the individual ML Development Accounts where data scientists can build and train models.

Jia (Vivian) Li2/7/2025

As technology continues to evolve, newer models are emerging, offering higher quality, increased flexibility, and faster image generation capabilities. One such groundbreaking model is Stable Diffusion XL (SDXL), released by StabilityAI, advancing the text-to-image generative AI technology to unprecedented heights. In this post, we demonstrate how to efficiently fine-tune the SDXL model using SageMaker Studio. We show how to then prepare the fine-tuned model to run on AWS Inferentia2 powered Amazon EC2 Inf2 instances, unlocking superior price performance for your inference workloads.

Deepti Tirumala2/6/2025

Integrating NeMo Guardrails with Large Language Models (LLMs) is a powerful step forward in deploying AI in customer-facing applications. The example of AnyCompany Pet Supplies illustrates how these technologies can enhance customer interactions while handling refusal and guiding the conversation toward the implemented outcomes. This journey towards ethical AI deployment is crucial for building sustainable, trust-based relationships with customers and shaping a future where technology aligns seamlessly with human values.

Georgi Botsihhin2/5/2025

There is consistent customer feedback that AI assistants are the most useful when users can interface with them within the productivity tools they already use on a daily basis, to avoid switching applications and context. Web applications like Amazon Q Business and Slack have become essential environments for modern AI assistant deployment. This post explores how diverse interfaces enhance user interaction, improve accessibility, and cater to varying preferences.

Nick Biso2/5/2025

The post showcases how generative AI can be used to logic, reason, and orchestrate integrations using a fictitious business process. It demonstrates strategies and techniques for orchestrating Amazon Bedrock agents and action groups to seamlessly integrate generative AI with existing business systems, enabling efficient data access and unlocking the full potential of generative AI.

Sujatha Dantuluri2/4/2025

In this post, we demonstrate how Amazon Q Apps can help maximize the value of existing knowledge resources and improve productivity among various teams, ranging from finance to DevOps to support engineers. We share specific examples of how the generative AI assistant can enable surface relevant information, distill complex topics, generate custom content, and execute workflows—all while maintaining robust security and data governance controls.

Rueben Jimenez2/3/2025

By leveraging the generative AI capabilities and tooling of Amazon Bedrock, you can create an intelligent nerve center that connects diverse data sources, converts data into actionable insights, and creates a comprehensive plan to mitigate supply chain risks. This post walks through how Amazon Bedrock Flows connects your business systems, monitors medical device shortages, and provides mitigation strategies based on knowledge from Amazon Bedrock Knowledge Bases or data stored in Amazon S3 directly. You’ll learn how to create a system that stays ahead of supply chain risks.

Sujatha Dantuluri1/31/2025

DeepSeek-R1 is an advanced large language model that combines reinforcement learning, chain-of-thought reasoning, and a Mixture of Experts architecture to deliver efficient, interpretable responses while maintaining safety through Amazon Bedrock Guardrails integration.

Vivek Gangasani1/31/2025

In this post, we show you how Amazon Web Services (AWS) helps in solving forecasting challenges by customizing machine learning (ML) models for forecasting. We dive into Amazon SageMaker Canvas and explain how SageMaker Canvas can solve forecasting challenges for retail and consumer packaged goods (CPG) enterprises.

Aditya Pendyala1/21/2025

In this post, we show how you can integrate Amazon Lex with Amazon Bedrock Knowledge Bases and ServiceNow to provide 24/7 automated support and self-service options.

Marcelo Silva1/21/2025

In this post, we show you how Kyndryl integrated Amazon Q Business with ServiceNow in a few simple steps. You will learn how to configure Amazon Q Business and ServiceNow, how to create a generative AI plugin for your ServiceNow incidents, and how to test and interact with ServiceNow using the Amazon Q Business web experience. This post will help you enhance your ServiceNow experience with Amazon Q Business and enjoy the benefits of a generative AI–powered interface.

Asif Fouzi1/16/2025

In this post, we show how you can use our enterprise graph machine learning (GML) framework GraphStorm to solve prediction challenges on large-scale complex networks inspired by our practices of exploring GML to mitigate the AWS backbone network congestion risk.

Jian Zhang1/15/2025

As organizations navigate the complexities of the digital realm, generative AI has emerged as a transformative force, empowering enterprises to enhance productivity, streamline workflows, and drive innovation. To maximize the value of insights generated by generative AI, it is crucial to provide simple ways for users to preserve and share these insights using commonly used tools such as email. This post explores how you can integrate Amazon Q Business with Amazon SES to email conversations to specified email addresses.

Sujatha Dantuluri1/9/2025

Generative AI applications should be developed with adequate controls for steering the behavior of FMs. Responsible AI considerations such as privacy, security, safety, controllability, fairness, explainability, transparency and governance help ensure that AI systems are trustworthy. In this post, we demonstrate how to use the AWS generative AI best practices framework on AWS Audit Manager to evaluate this insurance claim agent from a responsible AI lens.

Bharathi Srinivasan1/7/2025

In this blog post, we explore a client services agent assistant application developed by the London Stock Exchange Group (LSEG) using Amazon Q Business. We will discuss how Amazon Q Business saved time in generating answers, including summarizing documents, retrieving answers to complex Member enquiries, and combining information from different data sources (while providing in-text citations to the data sources used for each answer).

Ben Doughton1/7/2025

In this post, we walk you through the process to build an automated mechanism using Amazon SageMaker to process your log data, run training iterations over it to obtain the best-performing anomaly detection model, and register it with the Amazon SageMaker Model Registry for your customers to use it.

Nitesh Sehwani1/6/2025

In this blog post, we showcase how you can perform efficient supervised fine tuning for a Meta Llama 3 model using PEFT on AWS Trainium with SageMaker HyperPod. We use HuggingFace’s Optimum-Neuron software development kit (SDK) to apply LoRA to fine-tuning jobs, and use SageMaker HyperPod as the primary compute cluster to perform distributed training on Trainium. Using LoRA supervised fine-tuning for Meta Llama 3 models, you can further reduce your cost to fine tune models by up to 50% and reduce the training time by 70%.

Georgios Ioannides12/24/2024